Allele-specific DNA methylation: beyond imprinting.

نویسنده

  • Benjamin Tycko
چکیده

Allele-specific DNA methylation (ASM) and allele-specific gene expression (ASE) have long been studied in genomic imprinting and X chromosome inactivation. But these types of allelic asymmetries, along with allele-specific transcription factor binding (ASTF), have turned out to be far more pervasive-affecting many non-imprinted autosomal genes in normal human tissues. ASM, ASE and ASTF have now been mapped genome-wide by microarray-based methods and NextGen sequencing. Multiple studies agree that all three types of allelic asymmetries, as well as the related phenomena of expression and methylation quantitative trait loci, are mostly accounted for by cis-acting regulatory polymorphisms. The precise mechanisms by which this occurs are not yet understood, but there are some testable hypotheses and already a few direct clues. Future challenges include achieving higher resolution maps to locate the epicenters of cis-regulated ASM, using this information to test mechanistic models, and applying genome-wide maps of ASE/ASM/ASTF to pinpoint functional regulatory polymorphisms influencing disease susceptibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

I-50: Embryo Loss Due to Epigenetic Anomaliesin the Male Germ Line: Role of Estrogen

Background: To investigate if aberrant methylation and expression of imprinted genes of the Igf2-H19 locus in the spermatozoa and embryos could be a paternal epigenetic factor involved in early embryo loss To elucidate the role of estrogen in acquisition of the imprinting at the Igf2-H19 locus during spermatogenesis Materials and Methods: Adult male rats of Holtzman strain were administered tam...

متن کامل

Rapid and quantitative method of allele-specific DNA methylation analysis.

Several biological phenomena depend on differential methylation of chromosomal strands. While understanding the role of these processes requires information on allele-specific methylation, the available methodologies are not quantitative or labor-intensive. We describe a novel, rapid method to quantitate allele-specific DNA methylation based on the combination of bisulfite PCR and Pyrosequencin...

متن کامل

Genome-wide high resolution parental-specific DNA and histone methylation maps uncover patterns of imprinting regulation in maize.

Genetic imprinting is a specific epigenetic phenomenon in which a subset of genes is expressed depending on their parent-of-origin. Two types of chromatin modifications, DNA methylation and histone modification, are generally believed to be involved in the regulation of imprinting. However, the genome-wide correlation between allele-specific chromatin modifications and imprinted gene expression...

متن کامل

Imprinted genes and imprinting control regions show predominant intermediate methylation in adult somatic tissues

Genomic imprinting is an epigenetic feature characterized by parent-specific monoallelic gene expression. The aim of this study was to compare the DNA methylation status of imprinted genes and imprinting control regions (ICRs), harboring differentially methylated regions (DMRs) in a comprehensive panel of 18 somatic tissues. The germline DMRs analyzed were divided into ubiquitously imprinted an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 19 R2  شماره 

صفحات  -

تاریخ انتشار 2010